底面を水中に浸漬させたポーラスコンクリートの熱特性に関する実験的研究

ポーラスコンクリート	熱特性	揚水
骨材粒径	締固め方法	貯留水位

1. はじめに

本研究では、多孔質なポーラスコンクリート(以下、 POC)を建物外構および舗装に適用し、都市部の熱環境を 改善するシステムの開発を目指して一連の研究を行って いる1)。

本報では、図-1 に示すような、POC 底面を水中に浸漬 させた場合を対象とし、夏期の屋外におけるポーラスコ ンクリートの熱特性の把握を試みる。

2. 実験概要

表-1 に本実験の要因と水準を示す。使用材料は、 POC 以外に、一般に舗装に用いられることの多い普通コンク リート(NC)、および密粒度アスファルト(AS)も使用した。 また POC 用粗骨材として、それぞれ粒径の異なる単粒度 砕石 6 号(5~13 mm)、7 号(2.5~5 mm)、8 号(1.25~2.5 mm)、および8号と6号を2:1の比率で混合した複数粒径 (以下 6+8 号)の骨材を使用した。POC の締固めの方法

は、コテ仕上げのみと振動締固めの2種類とした。

POCの基本水準は、7号砕石を用いて振動締固めにより 打設された試験体とし、試験体厚さおよび貯留水位は基 本水準の試験体のみで変化させた。

表-2 にコンクリートの調合表と実測空隙率の測定結果 を示す。POC の調合は、締固め方法によらず同一とした。 POC の設計空隙率は 30%とした。POC および NC の練り混 ぜには傾胴式ミキサを用いた。型枠には、300×300×100 mmの角形鋼製型枠を用い、

試験体作成時に図-1 に示す 位置に熱電対を埋設した。 養生は材齢初期に一度散水 した以外は屋外暴露養生と した。温度測定時には、試 験体側面にスタイロフォー ムをアルミ箔でコーティン グした断熱材を付けて用い た。

3. 実験結果とその考察 3.1 試験体温度の経時変化

図-2 に気温および日射量 の測定結果を、図-3 に試験 体温度の測定結果を示す。

正会員 〇三島直生*1

中川武志*2

同

同

図-1 実験条件の概要

実験の要因と水準 表-1

要因	水準
材料の種類	<u>ポーラスコンクリート</u> , 普通コンクリート, アスファルト
骨材の種類	6 号, <u>7 号</u> , 8 号, 6+8 号
締固め方法	振動締固め, コテ仕上げ
貯留水位	-25mm, <u>-50mm</u> , -75mm
[決] . 甘士	小洋

[汪]__:基本水準

表-2 調合表および実測空隙率

插粨	使用	W/C	単位量(kg/m ³)			空隙率(%)		
1里大貝	骨材	(%)	W	С	S	G	振動	コテ
POC	6号		80	80 175		1512	34.2	34.6
	7号	46	80				33.0	35.7
	8号	40	92	200			34.4	35.3
	6+8 号		80	175			21.4	26.5
NC	6号	60	180	300	700	1050		

Experimental Study on Heat Characteristics of Porous Concrete Partly Soaked in Water

Naoki MISHIMA, Takeshi NAKAGAWA, Shigemitsu HATANAKA and Hiroaki KITANO

図-2 によれば、日射量は 11 時頃にピークを迎えて、そ の後低下していくが、図-3 に示した試験体の表面温度 は、いずれの試験体においても、日射量のピークから 1 時間ほど遅れた 12~13 時頃にピークを迎えている。ま た、内部および底部の温度は表面温度に少し遅れて上昇 する傾向があり、14 時頃までは表面に近いほど温度が 高くなるが、その後、表面温度は急激に低下し、日没後 には温度分布が逆転し、表面に近いほど低温となる。

3.2 試験体表面温度に及ぼす各要因の影響

図-4 に、13 時の時点における試験体の表面温度の比較を示す。図(a)からは、基本水準の POC が、NC より 5℃、AS より 17℃程度低い温度となっている。また、図(b)によれば、骨材粒径が小さい場合に表面温度が低くなる傾向があり、図(c)によれば、全て 7 号砕石を使用した POC であるにもかかわらず、貯留水位が-75mm の場合のみ極端に高い温度となっている。以上のような傾向は、POC の揚水性能 ²⁾によって説明することができる。

表-3 に、測定時の POC 試験体表面の可視画像および 熱画像を示す。表中の画像から明らかなように、表面温 度が 35℃以下の試験体は、全て表面まで揚水されてい ることが分かる(可視画像で硬化体が暗くみえる部分が 湿潤部分)。また、コテ仕上げの 6+8 号では、小径骨材 を混合したことによる部分的な揚水挙動も見られる。コ テ仕上げの7号では、熱電対を埋め込んだ部分が揚水さ れておらず、内部の不均一性の影響なども考えられる。

以上より、POC の底部を水中に浸漬させることで表面 温度を大幅に抑制することは可能であるが、その条件と して、材料の揚水性能および貯留水位を表面まで揚水が 可能な範囲に調整することが必要となる。

3.3 貯留水位と表面温度の関係

図-5 に、ハロゲンランプ(500W)を熱源とした室内実 験で、貯留水位を 10mm ずつ上昇させたときの試験体 表面温度の変化を示す。試験体と熱源との距離は 300mm とし、表面温度の測定値は水位変化後 7 時間経 過後のものを用いた。図の黒塗りのプロットの時点で表 面までの揚水が確認されている。この時点を比較すると、 骨材粒径が小さいものほど揚水性能が高い傾向が見られ、 表面温度も急激に低下することが分かる。

4. まとめ

本実験の結果、底部を水中に浸漬させたポーラスコン クリートの表面温度上昇を効率的に抑制するためには、 ポーラスコンクリートの揚水性能および貯留水位を設 計・調整し、表面まで揚水させることが必要であること が明らかとなった。

【謝辞】

本研究を遂行するにあたり、岸田依奈さん(タマホーム株

*1 三重大学大学院工学研究科建築学専攻・助教・博士(工学)

- *2 三重大学大学院工学研究科建築学専攻・大学院生・修士(工学)
- *3 三重大学大学院工学研究科建築学専攻・教授・工博

式会社)の助力を得た。本研究費の一部は、平成 19 年度科 学研究費補助金 基盤研究(B)(研究代表者:畑中重光)によ った。付記して謝意を表する。

【参考文献】

- 三島直生、中川武志、畑中重光、北野博亮:屋外実験によるポーラスコンクリート舗装の熱特性に関する基礎的研究、コンクリート工学年次論文集、Vol.30、2008.6(印刷中)
- 畑中重光、三島直生、坂本英輔:小粒径ポーラスコンクリートの揚水モデルに関する研究、セメント・コンクリート論文集、No.61、pp.601-608、2007.2

*1 Assist. Prof., Div. of Arch., Graduate School of Eng. Mie Univ., Dr.Eng.
*2 Graduate Student, Div. of Arch., Graduate School of Eng. Mie Univ., M.Eng.
*3 Prof., Div. of Arch., Graduate School of Eng. Mie Univ., Dr.Eng.